Skip to main content

Advertisement

Log in

New land in the Neotropics: a review of biotic community, ecosystem, and landscape transformations in the face of climate and glacier change

  • Review
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

The high tropical Andes are rapidly changing due to climate change, leading to strong biotic community, ecosystem, and landscape transformations. While a wealth of glacier, water resource, and ecosystem-related research exists, an integrated perspective on the drivers and processes of glacier, landscape, and biota dynamics is currently missing. Here, we address this gap by presenting an interdisciplinary review that analyzes past, current, and potential future evidence on climate and glacier driven changes in landscape, ecosystem and biota at different spatial scales. We first review documented glacier changes and landscape evolution over past decades to millennia and analyze projected future glacier shrinkage until 2100 for two case studies in the tropical Andes. The effects of climate and glacier change on high Andean biota are then examined from paleoecological research and comparative gradient analyses to chronosequence and diachronic studies of vegetation dynamics. Our analysis indicates major twenty-first century landscape transformations with important socioecological implications which can be grouped into (i) formation of new lakes and drying of existing lakes as glaciers recede, (ii) alteration of hydrological dynamics in glacier-fed streams and high Andean wetlands, resulting in community composition changes, (iii) upward shifts of species and formation of new communities in deglaciated forefronts,(iv) potential loss of wetland ecosystems, and (v) eventual loss of alpine biota. We advocate strengthening an interdisciplinary research agenda with a strong policy formulation link that enables enhanced cross-sectorial cooperation and knowledge sharing, capacity building of relevant stakeholders, and a more active participation of both government agencies and social organizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott MB, Wolfe BB, Wolfe AP, Seltzer GO, Aravena R, Mark BG, Polissar PJ, Rodbell DT, Rowe HD, Vuille M (2003) Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeogr Palaeoclimatol Palaeoecol 194:123–138. https://doi.org/10.1016/S0031-0182(03)00274-8

    Article  Google Scholar 

  • Almeida JP, Montúfar R, Anthelme F (2013) Patterns and origin of intraspecific functional variability in a tropical alpine species along an altitudinal gradient. Plant Ecol Divers 6:423–433. https://doi.org/10.1080/17550874.2012.702137

    Article  Google Scholar 

  • Anthelme F, Buendia B, Mazoyer C, Dangles O (2012) Unexpected mechanisms sustain the stress gradient hypothesis in a tropical alpine environment. J Veg Sci 23:62–72. https://doi.org/10.1111/j.1654-1103.2011.01333.x

    Article  Google Scholar 

  • Anthelme F, Cavieres LA, Dangles O (2014) Facilitation among plants in alpine environments in the face of climate change. Front Plant Sci 5:387. https://doi.org/10.3389/fpls.2014.00387

    Article  Google Scholar 

  • Anthelme F, Meneses RI, Valero NNH, Pozo P, Dangles O (2017) Fine nurse variations explain discrepancies in the stress-interaction relationship in alpine regions. Oikos 126:1173–1183. https://doi.org/10.1111/oik.04248

    Article  Google Scholar 

  • Baker PA, Rigsby CA, Seltzer GO, Fritz SC, Lowenstein TK, Bacher NP, Veliz C (2001) Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409:698. https://doi.org/10.1038/35055524

    Article  CAS  Google Scholar 

  • Baraer M, Mark BG, McKenzie JM, Condom T, Bury J, Huh K-I, Portocarrero C, Gómez J, Rathay S (2012) Glacier recession and water resources in Peru’s Cordillera Blanca. J Glaciol 58:134–150. https://doi.org/10.3189/2012JoG11J186

    Article  Google Scholar 

  • Bárcena TG, Finster KW, Yde JC (2011) Spatial patterns of soil development, methane oxidation, and methanotrophic diversity along a receding glacier forefield, Southeast Greenland. Arct Antarct Alp Res 43:178–188. https://doi.org/10.1657/1938-4246-43.2.178

    Article  Google Scholar 

  • Basantes-Serrano R, Rabatel A, Francou B, Vincent C, Maisincho L, CÁCeres B, Galarraga R, Alvarez D (2016) Slight mass loss revealed by reanalyzing glacier mass-balance observations on Glaciar Antisana 15α (inner tropics) during the 1995–2012 period. J Glaciol 62:124–136. https://doi.org/10.1017/jog.2016.17

    Article  Google Scholar 

  • Bell CD, Donoghue MJ (2005) Phylogeny and biogeography of Valerianaceae (Dipsacales) with special reference to the South American valerians. Org Divers Evol 5:147–159. https://doi.org/10.1016/j.ode.2004.10.014

    Article  Google Scholar 

  • Benavides JC (2014) The effect of drainage on organic matter accumulation and plant communities of high-altitude peatlands in the Colombian tropical Andes. Mires Peat 15:Article 01

    Google Scholar 

  • Benavides JC, Vitt DH, Wieder RK (2013) The influence of climate change on recent peat accumulation patterns of Distichia muscoides cushion bogs in the high-elevation tropical Andes of Colombia. J Geophys Res Biogeosci 118:1627–1635. https://doi.org/10.1002/2013JG002419

    Article  Google Scholar 

  • Bradley R, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312:1755–1756. https://doi.org/10.1126/science.1128087

    Article  CAS  Google Scholar 

  • Braun C, Bezada M (2013) The history and disappearance of glaciers in Venezuela. J Lat Am Geogr:85–124

    Article  Google Scholar 

  • Bueno A, Llambí LD, Wesche K (2015) Facilitation and edge effects influence vegetation regeneration in old-fields at the tropical Andean forest line. Appl Veg Sci 18:613–623. https://doi.org/10.1111/avsc.12186

    Article  Google Scholar 

  • Bury JT, Mark BG, McKenzie JM, French A, Baraer M, Huh KI, Luyo MAZ, López RJG (2011) Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Clim Chang 105:179–206

    Article  Google Scholar 

  • Bush, M.B. & Gosling, W.D. (2012) Environmental change in the humid tropics and monsoonal regions. The SAGE handbook of environmental change (ed. by J.A. Matthews, Bartlein, P.J., Briffa, K.R., Dawson, A.G., De Vernal, A., Denham, T., Fritz, S.C., & Oldfield, F.), pp. 113–140. SAGE, London

  • Bush MB, Silman MR, Urrego DH (2004) 48,000 Years of climate and forest change in a biodiversity hot spot. Science 303:827–829. https://doi.org/10.1126/science.1090795

    Article  CAS  Google Scholar 

  • Bush MB, Barbara C, Hansen S, Rodbell DT, Seltzer GO, Young KR, León B, Abbott MB, Silman MR, Gosling WD (2005) A 17 000-year history of Andean climate and vegetation change from Laguna de Chochos, Peru. J Quat Sci 20:703–714. https://doi.org/10.1002/jqs.983

    Article  Google Scholar 

  • Buytaert W, De Bièvre B (2012) Water for cities: the impact of climate change and demographic growth in the tropical Andes. Water Resour Res 48. https://doi.org/10.1029/2011WR011755

  • Buytaert W, Célleri R, De Bièvre B, Cisneros F, Wyseure G, Deckers J, Hofstede R (2006) Human impact on the hydrology of the Andean páramos. Earth Sci Rev 79:53–72. https://doi.org/10.1016/j.earscirev.2006.06.002

    Article  Google Scholar 

  • Buytaert W, Cuesta-Camacho F, Tobón C (2011) Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob Ecol Biogeogr 20:19–33. https://doi.org/10.1111/j.1466-8238.2010.00585.x

    Article  Google Scholar 

  • Buytaert W, Moulds S, Acosta L, De Bievre B, Olmos C, Villacis M, Tovar C, Verbist KM (2017) Glacial melt content of water use in the tropical Andes. Environ Res Lett 12:114014

    Article  Google Scholar 

  • Cáceres Y, Llambí LD, Rada F (2015) Shrubs as foundation species in a high tropical alpine ecosystem: a multi-scale analysis of plant spatial interactions. Plant Ecol Divers 8:147–161. https://doi.org/10.1080/17550874.2014.960173

    Article  Google Scholar 

  • Cárdenas ML, Gosling WD, Sherlock SC, Poole I, Pennington RT, Mothes P (2011) The response of vegetation on the Andean Flank in Western Amazonia to Pleistocene climate change. Science 331:1055–1058. https://doi.org/10.1126/science.1197947

    Article  CAS  Google Scholar 

  • Carey M, Molden OC, Rasmussen MB, Jackson M, Nolin AW, Mark BG (2017) Impacts of glacier recession and declining meltwater on mountain societies. Ann Am Assoc Geogr 107:350–359. https://doi.org/10.1080/24694452.2016.1243039

    Article  Google Scholar 

  • Carilla J, Halloy S, Cuello S, Grau A, Malizia A, Cuesta F (2018) Vegetation trends over eleven years on mountain summits in NW Argentina. Ecol Evol 8:11554–11567. https://doi.org/10.1002/ece3.4602

    Article  Google Scholar 

  • Cauvy-Fraunié S, Espinosa R, Andino P, Dangles O, Jacobsen D (2014) Relationships between stream macroinvertebrate communities and new flood-based indices of glacial influence. Freshw Biol 59:1916–1925. https://doi.org/10.1111/fwb.12395

    Article  Google Scholar 

  • Cauvy-Fraunié S, Espinosa R, Andino P, Jacobsen D, Dangles O (2015) Invertebrate metacommunity structure and dynamics in an Andean glacial stream network facing climate change. PLoS ONE 10:e0136793. https://doi.org/10.1371/journal.pone.0136793

    Article  CAS  Google Scholar 

  • Cauvy-Fraunié S, Andino P, Espinosa R, Calvez R, Jacobsen D, Dangles O (2016) Ecological responses to experimental glacier-runoff reduction in alpine rivers. Nat Commun 7:12025

    Article  Google Scholar 

  • Cazzolla Gatti R, Dudko A, Lim A, Velichevskaya AI, Lushchaeva IV, Pivovarova AV, Ventura S, Lumini E, Berruti A, Volkov IV (2018) The last 50 years of climate-induced melting of the Maliy Aktru glacier (Altai Mountains, Russia) revealed in a primary ecological succession. Ecol Evol 8:7401–7420. https://doi.org/10.1002/ece3.4258

    Article  Google Scholar 

  • Ceballos J, Tobón E, Arias M, Carvajal J, López O, Buitrago V, Valderrama J, Ramírez J (2008) Glaciares Santa Isabel y el Cocuy (Colombia): Seguimiento a su dinámica durante el período 2006–2008. Memorias del VII Encuentro Internacional de Investigadores del Grupo de Trabajo de Hielos y Nieves Andinos y del Caribe. Manizales, Colombia

    Google Scholar 

  • Clapperton CM, Clapperton C (1993) Quaternary geology and geomorphology of South America. Elsevier, Amsterdam

    Google Scholar 

  • Clarke GKC, Jarosch AH, Anslow FS, Radić V, Menounos B (2015) Projected deglaciation of western Canada in the twenty-first century. Nat Geosci 8:372. https://doi.org/10.1038/ngeo2407

    Article  CAS  Google Scholar 

  • Cleef A (1979) The phytogeographical position of the neotropical vascular paramoflora with special reference to the Colombian Cordillera Oriental. In: Larsen K, Holm Nielsen LB (eds) Tropical botany. Academic Press, London

    Google Scholar 

  • Cleef AM (1981) The vegetation of the Paramos of the Colombian Cordillera Oriental. Dissertationes Botanicae 61

  • Colonia D, Torres J, Haeberli W, Schauwecker S, Braendle E, Giraldez C, Cochachin A (2017) Compiling an inventory of glacier-bed overdeepenings and potential new lakes in de-glaciating areas of the Peruvian Andes: approach, first results, and perspectives for adaptation to climate change. Water 9:336. https://doi.org/10.3390/w9050336

    Article  Google Scholar 

  • Colwell RK (2009) Biodiversity: concepts, patterns, and measurement. The Princeton guide to ecology, 257–263

  • Cuellar I (2017) Fitocolonización en la zona periglacial del glaciar Las Conejeras, en el volcán Nevado de Santa Isabel - Proyecto Piloto. In, p. 19. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Bogotá

  • Cuesta F, Muriel P, Llambí LD, Halloy S, Aguirre N, Beck S, Carilla J, Meneses RI, Cuello S, Grau A, Gámez LE, Irazábal J, Jácome J, Jaramillo R, Ramírez L, Samaniego N, Suárez-Duque D, Thompson N, Tupayachi A, Viñas P, Yager K, Becerra MT, Pauli H, Gosling WD (2017) Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography 40:1381–1394. https://doi.org/10.1111/ecog.02567

    Article  Google Scholar 

  • Cuesta F, Tovar C, Llambí LD, Gosling WD, Halloy S, Carilla J, Muriel P, Meneses RI, Beck S, Ulloa-Ulloa C, Yager K, Aguirre N, Viñas P, Jácome J, Suárez-Duque D, Pauli H (under review) Thermal niche traits of tropical high-elevation plant species and communities and their vulnerability to global warming along a 4000 km latitudinal gradient in the Andes. J Biogeogr

  • D'Amico ME, Freppaz M, Filippa G, Zanini E (2014) Vegetation influence on soil formation rate in a proglacial chronosequence (Lys Glacier, NW Italian Alps). Catena 113:122–137. https://doi.org/10.1016/j.catena.2013.10.001

    Article  CAS  Google Scholar 

  • Dangles O, Rabatel A, Kraemer M, Zeballos G, Soruco A, Jacobsen D, Anthelme F (2017) Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes. PLoS ONE 12:e0175814. https://doi.org/10.1371/journal.pone.0175814

    Article  CAS  Google Scholar 

  • Davey M, Blaalid R, Vik U, Carlsen T, Kauserud H, Eidesen PB (2015) Primary succession of Bistorta vivipara (L.) Delabre (Polygonaceae) root-associated fungi mirrors plant succession in two glacial chronosequences. Environ Microbiol 17:2777–2790. https://doi.org/10.1111/1462-2920.12770

    Article  CAS  Google Scholar 

  • Drenkhan F, Guardamino L, Huggel C, Frey H (2018) Current and future glacier and lake assessment in the deglaciating Vilcanota-Urubamba basin, Peruvian Andes. Glob Planet Chang 169:105–118. https://doi.org/10.1016/j.gloplacha.2018.07.005

    Article  Google Scholar 

  • Drenkhan F, Huggel C, Guardamino L, Haeberli W (2019) Managing risks and future options from new lakes in the deglaciating Andes of Peru: the example of the Vilcanota-Urubamba basin. Sci Total Environ 665:465–483. https://doi.org/10.1016/j.scitotenv.2019.02.070

    Article  CAS  Google Scholar 

  • Duchicela SA, Cuesta F, Pinto E, Gosling WD, Young KR (2019) Indicators for assessing tropical alpine rehabilitation practices. Ecosphere 10:e02595. https://doi.org/10.1002/ecs2.2595

    Article  Google Scholar 

  • Emmer A (2017) Geomorphologically effective floods from moraine-dammed lakes in the Cordillera Blanca, Peru. Quat Sci Rev 177:220–234. https://doi.org/10.1016/j.quascirev.2017.10.028

    Article  Google Scholar 

  • Emmer A, Klimeš J, Mergili M, Vilímek V, Cochachin A (2016) 882 lakes of the Cordillera Blanca: an inventory, classification, evolution and assessment of susceptibility to outburst floods. CATENA 147:269–279. https://doi.org/10.1016/j.quascirev.2017.10.028

    Article  Google Scholar 

  • Feeley KJ, Silman MR (2010) Biotic attrition from tropical forests correcting for truncated temperature niches. Glob Chang Biol 16:1830–1836. https://doi.org/10.1111/j.1365-2486.2009.02085.x

    Article  Google Scholar 

  • Felde VA, Hooghiemstra H, Torres-Torres V, Birks HJB (2016) Detecting patterns of change in a long pollen-stratigraphical sequence from Funza, Colombia—a comparison of new and traditional numerical approaches. Rev Palaeobot Palynol 234:94–109. https://doi.org/10.1016/j.revpalbo.2016.08.003

    Article  Google Scholar 

  • Fjeldså J, Krabbe N (1990) Birds of the High Andes: a manual to the birds of the temperate zone of the Andes and Patagonia, South America. Zoological Museum, University of Copenhagen

  • Flantua, S. & Hooghiemstra, H. (2018a) Historical connectivity and mountain biodiversity. Mountains, climate and biodiversity. (ed. by C. Hoorn, A. Perrigo and A. Antonelli), pp. 171–185. Wiley, Chichester

  • Flantua, S. & Hooghiemstra, H. (2018b) Historical connectivity and mountain biodiversity. Mountains, climate and biodiversity. Chichester: Wiley, 171–185

  • Flantua, S.G.A., Hooghiemstra, H., van Boxel, J.H., Cabrera, M., González-Carranza, Z. & González-Arango, C. (2014) Connectivity dynamics since the Last Glacial Maximum in the northern Andes: a pollen-driven framework to assess potential migration. Monographs in systematic botany from the Missouri botanical garden (ed. by W.D. Stevens, O.M. Montiel and P.H. Raven), pp. 98–123. Missouri Botanical Garden Press, St. Louis

  • Francou B, Ramirez E, Cáceres B, Mendoza J (2000) Glacier evolution in the tropical Andes during the last decades of the 20th century: Chacaltaya, Bolivia, and Antizana, Ecuador. AMBIO 29:416–422. https://doi.org/10.1579/0044-7447-29.7.416

    Article  Google Scholar 

  • Frans C, Istanbulluoglu E, Lettenmaier DP, Naz BS, Clarke GKC, Condom T, Burns P, Nolin AW (2015) Predicting glacio-hydrologic change in the headwaters of the Zongo River, Cordillera Real, Bolivia. Water Resour Res 51:9029–9052. https://doi.org/10.1002/2014WR016728

    Article  Google Scholar 

  • Gardelle J, Arnaud Y, Berthier E (2011) Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Glob Planet Chang 75:47–55. https://doi.org/10.1016/j.gloplacha.2010.10.003

    Article  Google Scholar 

  • Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol 194:5–22. https://doi.org/10.1016/S0031-0182(03)00269-4

    Article  Google Scholar 

  • González-Carranza Z, Hooghiemstra H, Vélez MI (2012) Major altitudinal shifts in Andean vegetation on the Amazonian flank show temporary loss of biota in the Holocene. The Holocene 22:1227–1241. https://doi.org/10.1177/0959683612451183

    Article  Google Scholar 

  • Graae BJ, Vandvik V, Armbruster WS, Eiserhardt WL, Svenning J-C, Hylander K, Ehrlén J, Speed JDM, Klanderud K, Bråthen KA, Milbau A, Opedal ØH, Alsos IG, Ejrnæs R, Bruun HH, Birks HJB, Westergaard KB, Birks HH, Lenoir J (2018) Stay or go—how topographic complexity influences alpine plant population and community responses to climate change. Perspect Plant Ecol Evol Syst 30:41–50. https://doi.org/10.1016/j.ppees.2017.09.008

    Article  Google Scholar 

  • Gray AJ, Crawley MJ, Edwards PJ (1987) Colonization, succession, and stability : the 26th Symposium of the British Ecological Society held jointly with the Linnean Society of London. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Haeberli W, Hoelzle M, Paul F, Zemp M (2007) Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Ann Glaciol 46:150–160. https://doi.org/10.3189/172756407782871512

    Article  Google Scholar 

  • Haeberli W, Schaub Y, Huggel C (2017) Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology 293:405–417. https://doi.org/10.1016/j.geomorph.2016.02.009

    Article  Google Scholar 

  • Hall ML, Samaniego P, Le Pennec JL, Johnson JB (2008) Ecuadorian Andes volcanism: a review of Late Pliocene to present activity. J Volcanol Geotherm Res 176:1–6. https://doi.org/10.1016/j.jvolgeores.2008.06.012

    Article  CAS  Google Scholar 

  • Hanshaw M, Bookhagen B (2014) Glacial areas, lake areas, and snow lines from 1975 to 2012: status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru. Cryosphere 8:359–376. https://doi.org/10.5194/tc-8-359-2014

    Article  Google Scholar 

  • Harden CP, Hartsig J, Farley KA, Lee J, Bremer LL (2013) Effects of land-use change on water in Andean Páramo Grassland Soils. Ann Assoc Am Geogr 103:375–384. https://doi.org/10.1080/00045608.2013.754655

    Article  Google Scholar 

  • He L, Tang Y (2008) Soil development along primary succession sequences on moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China. Catena 72:259–269. https://doi.org/10.1016/j.catena.2007.05.010

    Article  Google Scholar 

  • Heine, K. (2011) Chapter 57 - Late Quaternary glaciations of Ecuador. Developments in Quaternary Sciences (ed. by J. Ehlers, P.L. Gibbard and P.D. Hughes), pp. 803–813. Elsevier

  • Hillyer R, Silman MR (2010) Changes in species interactions across a 2.5 km elevation gradient: effects on plant migration in response to climate change. Glob Chang Biol 16:3205–3214. https://doi.org/10.1111/j.1365-2486.2010.02268.x

    Article  Google Scholar 

  • Hooghiemstra, H. & Cleef, A.M. (1995) Pleistocene climatic change and environmental and generic dynamics in the North Andean montane forest and paramo. Biodiversity and Conservation of Neotropical Montane Forests, pp. 35–49. The New York Botanical Garden

  • Hooghiemstra H, van der Hammen T (2004) Quaternary ice-age dynamics in the Colombian Andes: developing an understanding of our legacy. Philos Trans Biol Sci 359:173–181. https://doi.org/10.1098/rstb.2003.1420

    Article  Google Scholar 

  • Hooghiemstra H, Wijninga VM, Cleef AM (2006) The paleobotanical record of Colombia: implications for biogeography and biodiversity. Ann Mo Bot Gard 93:297–325. https://doi.org/10.3417/0026-6493(2006)93[297:TPROCI]2.0.CO;2

    Article  Google Scholar 

  • Hribljan JA, Suárez E, Heckman KA, Lilleskov EA, Chimner RA (2016) Peatland carbon stocks and accumulation rates in the Ecuadorian páramo. Wetl Ecol Manag 24:113–127. https://doi.org/10.1007/s11273-016-9482-2

    Article  CAS  Google Scholar 

  • Hughes C, Eastwood R (2006) Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci 103:10334–10339. https://doi.org/10.1073/pnas.0601928103

    Article  CAS  Google Scholar 

  • Hughes PD, Gibbard PL (2015) A stratigraphical basis for the Last Glacial Maximum (LGM). Quat Int 383:174–185. https://doi.org/10.1016/j.quaint.2014.06.006

    Article  Google Scholar 

  • Hupp N, Llambí LD, Ramírez L, Callaway RM (2017) Alpine cushion plants have species–specific effects on microhabitat and community structure in the tropical Andes. J Veg Sci 28:928–938. https://doi.org/10.1111/jvs.12553

    Article  Google Scholar 

  • Huston MA (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • IDEAM, Instituto Alexander von Humboldt, CONDESAN (2018) Propuesta: Estrategia para monitoreo integrado de los ecosistemas de alta montaña en Colombia. Bogotá, Colombia

  • INAIGEM (2018) Inventario Nacional de Glaciares - Las Cordilleras Glaciares del Perú. Huaraz. In. El Instituto Nacional de Investigación en Glaciares y Ecosistemas de Montaña, Lima

    Google Scholar 

  • Jacobsen D, Milner AM, Brown LE, Dangles O (2012) Biodiversity under threat in glacier-fed river systems. Nat Clim Chang 2:361–364. https://doi.org/10.1038/nclimate1435

    Article  Google Scholar 

  • Jomelli V, Favier V, Rabatel A, Brunstein D, Hoffmann G, Francou B (2009) Fluctuations of glaciers in the tropical Andes over the last millennium and palaeoclimatic implications: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:269–282. https://doi.org/10.1016/j.palaeo.2008.10.033

    Article  Google Scholar 

  • Jomelli V, Khodri M, Favier V, Brunstein D, Ledru M-P, Wagnon P, Blard P-H, Sicart J-E, Braucher R, Grancher D, Bourlès DL, Braconnot P, Vuille M (2011) Irregular tropical glacier retreat over the Holocene epoch driven by progressive warming. Nature 474:196. https://doi.org/10.1038/nature10150

    Article  CAS  Google Scholar 

  • Josse, C., Cuesta, F., Navarro, G., Barrena, V., Becerra, M.T., Cabrera, E., Chacón-Moreno, E., Ferreira, W., Peralvo, M. & Saito, J. (2011) Physical geography and ecosystems in the tropical Andes. Climate change and biodiversity in the tropical Andes (ed. by S.K. Herzog, R. Martínez, P.M. Jørgensen and H. Tiessen), pp. 152–169. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), Brasilia

  • Kaser G (1999) A review of the modern fluctuations of tropical glaciers. Glob Planet Chang 22:93–103. https://doi.org/10.1016/S0921-8181(99)00028-4

    Article  Google Scholar 

  • Kattan GH, Franco P, Rojas V, Morales G (2004) Biological diversification in a complex region: a spatial analysis of faunistic diversity and biogeography of the Andes of Colombia. J Biogeogr 31:1829–1839. https://doi.org/10.1111/j.1365-2699.2004.01109.x

    Article  Google Scholar 

  • Kinouchi T, Nakajima T, Mendoza J, Fuchs P, Asaoka Y (2019) Water security in high mountain cities of the Andes under a growing population and climate change: a case study of La Paz and El Alto, Bolivia. Water Security 6:100025. https://doi.org/10.1016/j.wasec.2019.100025

    Article  Google Scholar 

  • Kraaijenbrink PDA, Bierkens MFP, Lutz AF, Immerzeel WW (2017) Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 549:257. https://doi.org/10.1038/nature23878

    Article  CAS  Google Scholar 

  • La Frenierre J, Mark BG (2017) Detecting patterns of climate change at Volcán Chimborazo, Ecuador, by Integrating Instrumental Data, Public Observations, and Glacier Change Analysis. Ann Am Assoc Geogr 107:979–997. https://doi.org/10.1080/24694452.2016.1270185

    Article  Google Scholar 

  • Lamprecht A, Semenchuk PR, Steinbauer K, Winkler M, Pauli H (2018) Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. New Phytol 220:447–459. https://doi.org/10.1111/nph.15290

    Article  Google Scholar 

  • Lindenmayer DB, Piggott MP, Wintle BA (2013) Counting the books while the library burns: why conservation monitoring programs need a plan for action. Front Ecol Environ 11:549–555. https://doi.org/10.1890/120220

    Article  Google Scholar 

  • Linsbauer A, Paul F, Haeberli W (2012) Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: application of a fast and robust approach. J Geophys Res Earth Surf 117(F3). https://doi.org/10.1029/2011JF002313

    Article  Google Scholar 

  • Linsbauer A, Frey H, Haeberli W, Machguth H, Azam MF, Allen S (2016) Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya—Karakoram region. Ann Glaciol 57:119–130. https://doi.org/10.3189/2016AoG71A627

    Article  Google Scholar 

  • Llambí LD, Cuesta F (2014) La diversidad de los páramos andinos en el espacio y en el tiempo. In: Cuesta F, Sevink J, Llambí LD, De Bièvre B, Posner J (eds) Avances en investigación para la conservación de los páramos andinos. CONDESAN, Universidad de Ámsterdam, ICAE-Universidad de Los Andes, Universidad de Wisconsin, Lima, pp 8–38

    Google Scholar 

  • Lortie CJ, Brooker RW, Choler P, Kikvidze Z, Michalet R, Pugnaire FI, Callaway RM (2004) Rethinking plant community theory. Oikos 107:433–438. https://doi.org/10.1111/j.0030-1299.2004.13250.x

    Article  Google Scholar 

  • Loza Herrera S, Meneses RI, Anthelme F (2015) Comunidades vegetales de los bofedales de la Cordillera Real (Bolivia) bajo el calentamiento global. Ecología en Bolivia 50:39–56

    Google Scholar 

  • Madriñán S, Cortés AJ, Richardson JE (2013) Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Front Genet 4:192. https://doi.org/10.3389/fgene.2013.00192

    Article  Google Scholar 

  • Magrin GO, Marengo JA, Boulanger J-P et al (2014) Central and South America. In: Barros VR, Field CB, Dokken DJ et al (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change. Cambridge University Press, Cambridge, pp 1499–1566

    Google Scholar 

  • Manciati C, Villacís M, Taupin J-D, Cadier E, Galárraga-Sánchez R, Cáceres B (2014) Empirical mass balance modelling of South American tropical glaciers: case study of Antisana volcano, Ecuador. Hydrol Sci J 59:1519–1535. https://doi.org/10.1080/02626667.2014.888490

    Article  Google Scholar 

  • Mark BG (2008) Tracing tropical Andean glaciers over space and time: some lessons and transdisciplinary implications. Glob Planet Chang 60:101–114. https://doi.org/10.1016/j.gloplacha.2006.07.032

    Article  Google Scholar 

  • Mark BG, Seltzer GO, Rodbell DT, Goodman AY (2002) Rates of deglaciation during the last glaciation and holocene in the Cordillera Vilcanota-Quelccaya Ice Cap Region, Southeastern Perú. Quat Res 57:287–298. https://doi.org/10.1006/qres.2002.2320

    Article  Google Scholar 

  • Mark BG, French A, Baraer M, Carey M, Bury J, Young KR, Polk MH, Wigmore O, Lagos P, Crumley R (2017) Glacier loss and hydro-social risks in the Peruvian Andes. Glob Planet Chang 159:61–76. https://doi.org/10.1016/j.gloplacha.2017.10.003

    Article  Google Scholar 

  • Melcher IM, Bouman F, Cleef AM (2000) Seed Dispersal in Páramo Plants: Epizoochorous and Hydrochorous Taxa. Plant Biol 2:40–52

    Article  Google Scholar 

  • Mittermeier, R.A., Turner, W.R., Larsen, F.W., Brooks, T.M. & Gascon, C. (2011) Global biodiversity conservation: the critical role of hotspots. Biodiversity hotspots: distribution and protection of conservation priority areas (ed. by F.E. Zachos and J.C. Habel), pp. 3–22. Springer Berlin

  • Morán-Tejeda E, Ceballos JL, Peña K, Lorenzo-Lacruz J, López-Moreno JI (2018) Recent evolution and associated hydrological dynamics of a vanishing tropical Andean glacier: Glaciar de Conejeras, Colombia. Hydrol Earth Syst Sci 22:5445–5461

    Article  Google Scholar 

  • Moret P, Aráuz MÁ, Gobbi M, Barragán Á (2016) Climate warming effects in the tropical Andes: first evidence for upslope shifts of Carabidae (Coleoptera) in Ecuador. Insect Conserv Divers 9:342–350. https://doi.org/10.1111/icad.12173

    Article  Google Scholar 

  • Morueta-Holme N, Engemann K, Sandoval-Acuña P, Jonas JD, Segnitz RM, Svenning J-C (2015) Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc Natl Acad Sci 112:12741–12745. https://doi.org/10.1073/pnas.1509938112

    Article  CAS  Google Scholar 

  • Mosblech NAS, Bush MB, Gosling WD, Hodell D, Thomas L, van Calsteren P, Correa-Metrio A, Valencia BG, Curtis J, van Woesik R (2012) North Atlantic forcing of Amazonian precipitation during the last ice age. Nat Geosci 5:817. https://doi.org/10.1038/ngeo1588

    Article  CAS  Google Scholar 

  • Moscol Olivera MC, Hooghiemstra H (2010) Three millennia upper forest line changes in northern Ecuador: Pollen records and altitudinal vegetation distributions. Rev Palaeobot Palynol 163:113–126. https://doi.org/10.1016/j.revpalbo.2010.10.003

    Article  Google Scholar 

  • Mothes PA, Hall ML (2008) The plinian fallout associated with Quilotoa's 800 yr BP eruption, Ecuadorian Andes. J Volcanol Geotherm Res 176:56–69. https://doi.org/10.1016/j.jvolgeores.2008.05.018

    Article  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    Article  CAS  Google Scholar 

  • Nolan C, Overpeck JT, Allen JRM, Anderson PM, Betancourt JL, Binney HA, Brewer S, Bush MB, Chase BM, Cheddadi R, Djamali M, Dodson J, Edwards ME, Gosling WD, Haberle S, Hotchkiss SC, Huntley B, Ivory SJ, Kershaw AP, Kim S-H, Latorre C, Leydet M, Lézine A-M, Liu K-B, Liu Y, Lozhkin AV, McGlone MS, Marchant RA, Momohara A, Moreno PI, Müller S, Otto-Bliesner BL, Shen C, Stevenson J, Takahara H, Tarasov PE, Tipton J, Vincens A, Weng C, Xu Q, Zheng Z, Jackson ST (2018) Past and future global transformation of terrestrial ecosystems under climate change. Science 361:920–923. https://doi.org/10.1126/science.aan5360

    Article  CAS  Google Scholar 

  • Ortuño T, Beck S, Sarmiento L (2006) Dinámica sucesional de la vegetación en un sistema agrícola con descanso largo en el Altiplano central boliviano. Ecología en Bolivia 41:40–70

    Google Scholar 

  • Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado RF, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev P, Moiseev D, Molau U, Mesa JM, Nagy L, Pelino G, Puşcaş M, Rossi G, Stanisci A, Syverhuset AO, Theurillat J-P, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent Plant Diversity Changes on Europe’s Mountain Summits. Science 336:353–355. https://doi.org/10.1126/science.1219033

    Article  CAS  Google Scholar 

  • Peduzzi P, Herold C, Silverio W (2010) Assessing high altitude glacier thickness, volume and area changes using field, GIS and remote sensing techniques: the case of Nevado Coropuna (Peru). Cryosphere 4:313–323

    Article  Google Scholar 

  • Pérez FL (1995) Plant-induced spatial patterns of surface soil properties near caulescent Andean rosettes. Geoderma 68:101–121. https://doi.org/10.1016/0016-7061(95)00028-M

    Article  Google Scholar 

  • Perry LB, Seimon A, Andrade-Flores MF, Endries JL, Yuter SE, Velarde F, Arias S, Bonshoms M, Burton EJ, Winkelmann IR, Cooper CM, Mamani G, Rado M, Montoya N, Quispe N (2017) Characteristics of precipitating storms in glacierized tropical Andean Cordilleras of Peru and Bolivia. Ann Am Assoc Geogr 107:309–322. https://doi.org/10.1080/24694452.2016.1260439

    Article  Google Scholar 

  • Pestalozzi H (2000) Sectoral fallow systems and the management of soil fertility: the rationality of indigenous knowledge in the high Andes of Bolivia. Mt Res Dev 20:64–72. https://doi.org/10.1659/0276-4741(2000)020[0064:SFSATM]2.0.CO;2

    Article  Google Scholar 

  • Polk MH (2016) “They are drying out”: social-ecological consequences of glacier recession on mountain peatlands in Huascarán National Park, Peru. The University of Texas at Austin, Austin

    Google Scholar 

  • Polk MH, Young KR, Baraer M, Mark BG, McKenzie JM, Bury J, Carey M (2017) Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru's Cordillera Blanca. Appl Geogr 78:94–103. https://doi.org/10.1016/j.apgeog.2016.11.004

    Article  Google Scholar 

  • Rabatel A, Francou B, Jomelli V, Naveau P, Grancher D (2008) A chronology of the Little Ice Age in the tropical Andes of Bolivia (16°S) and its implications for climate reconstruction. Quat Res 70:198–212. https://doi.org/10.1016/j.yqres.2008.02.012

    Article  Google Scholar 

  • Rabatel A, Francou B, Soruco A, Gomez J, Cáceres B, Ceballos JL, Basantes R, Vuille M, Sicart J-E, Huggel C (2012) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102. https://doi.org/10.5194/tc-7-81-2013

    Article  Google Scholar 

  • Rabatel A, Francou B, Soruco A, Gomez J, Caceres B et al (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102. https://doi.org/10.5194/tc-7-81-2013

    Article  Google Scholar 

  • Rabatel A, Ceballos JL, Micheletti N, Jordan E, Braitmeier M, González J, Mölg N, Ménégoz M, Huggel C, Zemp M (2018) Toward an imminent extinction of Colombian glaciers? Geogr Ann A Phys Geogr 100:75–95. https://doi.org/10.1080/04353676.2017.1383015

    Article  Google Scholar 

  • Radić V, Hock R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat Geosci 4:91. https://doi.org/10.1038/ngeo1052

    Article  CAS  Google Scholar 

  • Ramirez-Villegas J, Cuesta F, Devenish C, Peralvo M, Jarvis A, Arnillas CA (2014) Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. J Nat Conserv 22:391–404. https://doi.org/10.1016/j.jnc.2014.03.007

    Article  Google Scholar 

  • Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD, Coelho MTP, Cassemiro FAS, Rahbek C, Colwell RK (2018) Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361. https://doi.org/10.1126/science.aar5452

    Article  Google Scholar 

  • Rehm EM, Feeley KJ (2015) The inability of tropical cloud forest species to invade grasslands above treeline during climate change: potential explanations and consequences. Ecography 38:1167–1175. https://doi.org/10.1111/ecog.01050

    Article  Google Scholar 

  • Réveillet M, Rabatel A, Gillet-Chaulet F, Soruco A (2015) Simulations of changes to Glaciar Zongo, Bolivia (16° S), over the 21st century using a 3-D full-Stokes model and CMIP5 climate projections. Ann Glaciol 56:89–97. https://doi.org/10.3189/2015AoG70A113

    Article  Google Scholar 

  • Rundel PW, Palma B (2000) Preserving the Unique Puna Ecosystems of the Andean Altiplano. Mt Res Dev 20:262–271. https://doi.org/10.1659/0276-4741(2000)020[0262:PTUPEO]2.0.CO;2

    Article  Google Scholar 

  • Salzmann N, Machguth H, Linsbauer A (2012) The Swiss Alpine glaciers’ response to the global ‘2 °C air temperature target’. Environ Res Lett 7:044001. https://doi.org/10.1088/1748-9326/7/4/044001

    Article  Google Scholar 

  • Salzmann N, Huggel C, Rohrer M, Silverio W, Mark BG, Burns P, Portocarrero C (2013) Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere 7:103–118. https://doi.org/10.5194/tc-7-103-2013

    Article  Google Scholar 

  • Sarmiento L, Monasterio M, Montilla M (1993) Ecological bases, sustainability, and current trends in traditional agriculture in the Venezuelan high Andes. Mt Res Dev:167–176. https://doi.org/10.2307/3673634

    Article  Google Scholar 

  • Sarmiento L, Llambí LD, Escalona A, Marquez N (2003) Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecol 166:145–156. https://doi.org/10.1023/a:1023262724696

    Article  Google Scholar 

  • Sarmiento L, Smith JK, Márquez N, Escalona A, Erazo MC (2015) Constraints for the restoration of tropical alpine vegetation on degraded slopes of the Venezuelan Andes. Plant Ecol Divers 8:277–291. https://doi.org/10.1080/17550874.2014.898163

    Article  Google Scholar 

  • Schauwecker S, Rohrer M, Acuña D, Cochachin A, Dávila L, Frey H, Giráldez C, Gómez J, Huggel C, Jacques-Coper M (2014) Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited. Glob Planet Chang 119:85–97. https://doi.org/10.1016/j.gloplacha.2014.05.005 https://doi.org/10.1002/2016JD025943

  • Schauwecker S, Rohrer M, Huggel C, Endries J, Montoya N, Neukom R, Perry B, Salzmann N, Schwarb M, Suarez W (2017) The freezing level in the tropical Andes, Peru: an indicator for present and future glacier extents. J Geophys Res-Atmos 122:5172–5189. https://doi.org/10.1002/2016JD025943

    Article  Google Scholar 

  • Schubert C, Clapperton CM (1990) Quaternary Glaciations in the northern Andes (Venezuela, Colombia and Ecuador). Quat Sci Rev 9:123–135. https://doi.org/10.1016/0277-3791(90)90014-2

    Article  Google Scholar 

  • Seimon TA, Seimon A, Daszak P, Halloy SRP, Schloegel LM, Aguilar CA, Sowell P, Hyatt AD, Konecky B, Simmons E, J. (2007) Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Glob Chang Biol 13:288–299. https://doi.org/10.1111/j.1365-2486.2006.01278.x

    Article  Google Scholar 

  • Seimon TA, Seimon A, Yager K, Reider K, Delgado A, Sowell P, Tupayachi A, Konecky B, McAloose D, Halloy S (2017) Long-term monitoring of tropical alpine habitat change, Andean anurans, and chytrid fungus in the Cordillera Vilcanota, Peru: Results from a decade of study. Ecol Evol 7:1527–1540. https://doi.org/10.1002/ece3.2779

    Article  Google Scholar 

  • Sklenář P (2006) Searching for Altitudinal Zonation: Species Distribution and Vegetation Composition in the Superpáramo of Volcán Iliniza, Ecuador. Plant Ecol 184:337–350. https://doi.org/10.1007/s11258-005-9077-0

    Article  Google Scholar 

  • Sklenář P, Balslev H (2005) Superpáramo plant species diversity and phytogeography in Ecuador. Flora - Morphology, Distribution, Functional Ecology of Plants 200:416–433. https://doi.org/10.1016/j.flora.2004.12.006

    Article  Google Scholar 

  • Sklenár P, Ramsay PM (2001) Diversity of zonal páramo plant communities in Ecuador. Divers Distrib 7:113–124. https://doi.org/10.1046/j.1472-4642.2001.00101.x

    Article  Google Scholar 

  • Sklenář P, Kovář P, Palice Z, Stančík D, Soldán Z (2010) Primary succession of high-altitude Andean vegetation on lahars of Volcán Cotopaxi, Ecuador. Phytocoenologia 40:15–28. https://doi.org/10.1127/0340-269X/2010/0040-0442

    Article  Google Scholar 

  • Sklenář P, Dušková E, Balslev H (2011) Tropical and temperate: evolutionary history of Páramo Flora. Bot Rev 77:71–108. https://doi.org/10.1007/s12229-010-9061-9

    Article  Google Scholar 

  • Sklenář P, Kučerová A, Macková J, Romoleroux K (2016) Temperature microclimates of plants in a tropical alpine environment: how much does growth form matter? Arct Antarct Alp Res 48:61–78. https://doi.org/10.1657/AAAR0014-084

    Article  Google Scholar 

  • Solomina O, Jomelli V, Kaser G, Ames A, Berger B, Pouyaud B (2007) Lichenometry in the Cordillera Blanca, Peru: “Little Ice Age” moraine chronology. Glob Planet Chang 59:225–235. https://doi.org/10.1016/j.gloplacha.2006.11.016

    Article  Google Scholar 

  • Steinbauer MJ, Grytnes J-A, Jurasinski G, Kulonen A, Lenoir J, Pauli H, Rixen C, Winkler M, Bardy-Durchhalter M, Barni E, Bjorkman AD, Breiner FT, Burg S, Czortek P, Dawes MA, Delimat A, Dullinger S, Erschbamer B, Felde VA, Fernández-Arberas O, Fossheim KF, Gómez-García D, Georges D, Grindrud ET, Haider S, Haugum SV, Henriksen H, Herreros MJ, Jaroszewicz B, Jaroszynska F, Kanka R, Kapfer J, Klanderud K, Kühn I, Lamprecht A, Matteodo M, di Cella UM, Normand S, Odland A, Olsen SL, Palacio S, Petey M, Piscová V, Sedlakova B, Steinbauer K, Stöckli V, Svenning J-C, Teppa G, Theurillat J-P, Vittoz P, Woodin SJ, Zimmermann NE, Wipf S (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556:231–234

    Article  CAS  Google Scholar 

  • Suárez E, Orndahl K, Goodwin K (2015) Lava flows and moraines as corridors for early plant colonization of glacier forefronts on tropical volcanoes. Biotropica 47:645–649. https://doi.org/10.1111/btp.12260

    Article  Google Scholar 

  • Thompson LG, Davis ME, Mosley-Thompson E, Lin P-N, Henderson KA, Mashiotta TA (2005) Tropical ice core records: evidence for asynchronous glaciation on Milankovitch timescales. J Quat Sci 20:723–733. https://doi.org/10.1002/jqs.972

    Article  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Brecher H, Davis M, León B, Les D, Lin P-N, Mashiotta T, Mountain K (2006) Abrupt tropical climate change: past and present. Proc Natl Acad Sci 103:10536–10543. https://doi.org/10.1073/pnas.0603900103

    Article  CAS  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME, Brecher HH (2011) Tropical glaciers, recorders and indicators of climate change, are disappearing globally. Ann Glaciol 52:23–34. https://doi.org/10.3189/172756411799096231

    Article  CAS  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME, Zagorodnov VS, Howat IM, Mikhalenko VN, Lin P-N (2013) Annually resolved ice core records of tropical climate variability over the past ~1800 years. Science 340:945–950. https://doi.org/10.1126/science.1234210

    Article  CAS  Google Scholar 

  • Tovar C, Arnillas CA, Cuesta F, Buytaert W (2013) Diverging responses of tropical Andean biomes under future climate conditions. PLoS ONE 8:e63634. https://doi.org/10.1371/journal.pone.0063634

    Article  CAS  Google Scholar 

  • Urbina JC, Benavides JC (2015) Simulated small scale disturbances increase decomposition rates and facilitates invasive species encroachment in a high elevation tropical Andean peatland. Biotropica 47:143–151. https://doi.org/10.1111/btp.12191

    Article  Google Scholar 

  • Valencia BG, Bush MB, Coe AL, Orren E, Gosling WD (2018) Polylepis woodland dynamics during the last 20,000 years. J Biogeogr 45:1019–1030. https://doi.org/10.1111/jbi.13209

    Article  Google Scholar 

  • Van Der Hammen T (1974) The Pleistocene changes of vegetation and climate in tropical South America. J Biogeogr 1:3–26. https://doi.org/10.2307/3038066

    Article  Google Scholar 

  • van der Hammen, T. & Cleef, A.M. (1986) Development of the high Andean páramo flora and vegetation. High altitude tropical biogeography (ed. by F. Vuilleumier, Monasterio, M.), pp. 153–201. Oxford University Press, New York

  • Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E, Solomina O, Steffen K, Zhang T (2013) Observations: cryosphere. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 317–382

    Google Scholar 

  • Vergara W, Deeb A, Valencia A, Haeussling S, Zarzar A, Bradley R, Francou B (2009) The Potential consequences of rapid glacier retreat in the Northern Andes. Walter Vergara (Comp.), Assessing the Potential Consequences of Climate Destabilization in Latin America 61

  • Villota A, Behling H, León-Yánez S (2017) Three millennia of vegetation and environmental dynamics in the Lagunas de Mojanda region, northern Ecuador. 57:407. https://doi.org/10.1515/acpa-2017-0016

    Article  Google Scholar 

  • von Hagen KB, Kadereit JW (2001) The phylogeny of Gentianella (Gentianaceae) and its colonization of the southern hemisphere as revealed by nuclear and chloroplast DNA sequence variation. Org Divers Evol 1:61–79. https://doi.org/10.1078/1439-6092-00005

    Article  Google Scholar 

  • Von Humboldt A (1807) Essai sur la géographie des plantes: accompagne d'un tableau physique des régions équinoxiales. Levrault & Schoell, Paris

    Google Scholar 

  • Vuille M, Bradley RS, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Climate Change 59:75–99. https://doi.org/10.1007/978-94-015-1252-7_5

    Article  Google Scholar 

  • Vuille M, Kaser G, Juen I (2008a) Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation. Glob Planet Chang 62:14–28. https://doi.org/10.1016/j.gloplacha.2007.11.003

    Article  Google Scholar 

  • Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008b) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96. https://doi.org/10.1016/j.earscirev.2008.04.002

    Article  Google Scholar 

  • Vuille M, Franquist E, Garreaud R, Lavado Casimiro WS, Cáceres B (2015) Impact of the global warming hiatus on Andean temperature. J Geophys Res-Atmos 120:3745–3757. https://doi.org/10.1002/2015JD023126

    Article  Google Scholar 

  • Vuille M, Carey M, Huggel C, Buytaert W, Rabatel A, Jacobsen D, Soruco A, Villacis M, Yarleque C, Elison Timm O, Condom T, Salzmann N, Sicart J-E (2018) Rapid decline of snow and ice in the tropical Andes—impacts, uncertainties and challenges ahead. Earth Sci Rev 176:195–213. https://doi.org/10.1016/j.earscirev.2017.09.019

    Article  Google Scholar 

  • Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Williams JJ, Gosling WD, Brooks SJ, Coe AL, Xu S (2011) Vegetation, climate and fire in the eastern Andes (Bolivia) during the last 18,000years. Palaeogeogr Palaeoclimatol Palaeoecol 312:115–126. https://doi.org/10.1016/j.palaeo.2011.10.001

    Article  Google Scholar 

  • Young KR, Ponette-González AG, Polk MH, Lipton JK (2017) Snowlines and Treelines in the Tropical Andes. Ann Am Assoc Geogr 107:429–440. https://doi.org/10.1080/24694452.2016.1235479

    Article  Google Scholar 

  • Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M, Paul F, Haeberli W, Denzinger F, Ahlstrøm AP, Anderson B, Bajracharya S, Baroni C, Braun LN, Cáceres BE, Casassa G, Cobos G, Dávila LR, Delgado Granados H, Demuth MN, Espizua L, Fischer A, Fujita K, Gadek B, Ghazanfar A, Ove Hagen J, Holmlund P, Karimi N, Li Z, Pelto M, Pitte P, Popovnin VV, Portocarrero CA, Prinz R, Sangewar CV, Severskiy I, Sigurđsson O, Soruco A, Usubaliev R, Vincent C (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762. https://doi.org/10.3189/2015JoG15J017

    Article  Google Scholar 

  • Zimmer A, Meneses RI, Rabatel A, Soruco A, Dangles O, Anthelme F (2018) Time lag between glacial retreat and upward migration alters tropical alpine communities. Perspect Plant Ecol Evol Syst 30:89–102. https://doi.org/10.1016/j.ppees.2017.05.003

    Article  Google Scholar 

Download references

Acknowledgments

This study was developed in the framework of and supported by the Sustainable Mountain Development for Global Change (SMD4GC) Programme of the Swiss Agency for Development and Cooperation (SDC). Further support is acknowledged from the Proyecto Glaciares+, funded by SDC and implemented in collaboration with CARE Peru, and the project AguaFuturo funded by the Swiss National Science Foundation (project no. 205121L_166272). We furthermore thank Simone Schauwecker from University of Geneva, Andreas Linsbauer from University of Zurich, and the Unidad de Glaciología y Recursos Hídricos (UGRH) of the Autoridad Nacional de Agua (ANA), and the Instituto Nacional de Investigación en Glaciología y Ecosistemas de Montaña (INAIGEM) for data and information exchange. FC has also received additional funding to complete this study from the EcoAndes Project conducted by CONDESAN and UN-Environment, funded by the Global Environmental Fund (GEF) and from the Andean Forest Program funded by SDC. We thank the GLORIA-Andes network for the baseline data provided and all of their PIs: Rosa Isela Meneses, Julieta Carilla, Stephan Halloy, Karina Yager, Jorge Jácome, and Stephan Beck.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco Cuesta or Luis D. Llambí.

Additional information

Editor: Wolfgang Cramer

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuesta, F., Llambí, L.D., Huggel, C. et al. New land in the Neotropics: a review of biotic community, ecosystem, and landscape transformations in the face of climate and glacier change. Reg Environ Change 19, 1623–1642 (2019). https://doi.org/10.1007/s10113-019-01499-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-019-01499-3

Keywords

Navigation